Product Details
Place of Origin: China
Brand Name: DLX
Model Number: 0Cr21Al4
Payment & Shipping Terms
Minimum Order Quantity: 5
Packaging Details: Spool package with Carton box, Coil package with polybag
Delivery Time: 5-21 days
Payment Terms: L/C, T/T, Western Union, MoneyGram
Supply Ability: 300 tons per month
Material: |
Ferrous Chromium Aluminum |
Resistivity: |
1.23+/-0.05 |
Tensile Strength: |
700MPA |
Elongtation: |
≥12% |
Application: |
Heating, Resistivity |
Condition: |
Hard / Soft |
Sureface: |
Bright, Oxided, Acide |
Delivery Time: |
7-20 Days |
Maximum Temperature: |
1100℃ |
Melting Point: |
1400℃ |
Name: |
Resistance Heating Wire |
Material: |
Ferrous Chromium Aluminum |
Resistivity: |
1.23+/-0.05 |
Tensile Strength: |
700MPA |
Elongtation: |
≥12% |
Application: |
Heating, Resistivity |
Condition: |
Hard / Soft |
Sureface: |
Bright, Oxided, Acide |
Delivery Time: |
7-20 Days |
Maximum Temperature: |
1100℃ |
Melting Point: |
1400℃ |
Name: |
Resistance Heating Wire |
0Cr21Al4 resistance wire is a type of iron chromium aluminum alloy resistance wire, which has good high-temperature stability and oxidation resistance, and is therefore widely used in many fields.
Through its widespread application in the aerospace industry, 0Cr21Al4 resistance wire provides critical support for the reliability, durability, and performance of aerospace devices.
0Cr21Al4 resistance wire is commonly used as heating elements in aircraft engines to control temperatures and ensure proper operation.
0Cr21Al4 resistance wire is used in the thermal control systems of aerospace devices to maintain temperatures within safe limits.
0Cr21Al4 resistance wire is used in fuel system heaters of aerospace devices to ensure the flowability and availability of fuel in low-temperature environments.
0Cr21Al4 resistance wire plays a crucial role in the environmental control systems of aerospace devices, controlling cabin temperature and humidity.
0Cr21Al4 resistance wire is used in navigation and communication equipment of aerospace devices to maintain stability and performance in harsh environments.
Alloy Nomenclature Performance | 1Cr13Al4 | 0Cr25Al5 | 0Cr21Al6 | 0Cr23Al5 | 0Cr21Al4 | 0Cr21Al6Nb | 0Cr27Al7Mo2 | |
Main Chemical composition | Cr | 12.0-15.0 | 23.0-26.0 | 19.0-22.0 | 20.5-23.5 | 18.0-21.0 | 21.0-23.0 | 26.5-27.8 |
Al | 4.0-6.0 | 4.5-6.5 | 5.0-7.0 | 4.2-5.3 | 3.0-4.2 | 5.0-7.0 | 6.0-7.0 | |
Re | opportune | opportune | opportune | opportune | opportune | opportune | opportune | |
Fe | Rest | Rest | Rest | Rest | Rest | Rest | Rest | |
Nb0.5 | Mo1.8-2.2 | |||||||
Max. continuous service temp. of element(°C) | 950 | 1250 | 1250 | 1250 | 1100 | 1350 | 1400 | |
Resistivity at 20ºC(μΩ·m) | 1.25 | 1.42 | 1.42 | 1.35 | 1.23 | 1.45 | 1.53 | |
Density(g/cm3) | 7.4 | 7.1 | 7.16 | 7.25 | 7.35 | 7.1 | 7.1 | |
Thermal conductivity(KJ/m·h·ºC) | 52.7 | 46.1 | 63.2 | 60.2 | 46.9 | 46.1 | ||
Coefficient of lines expansion(α×10-6/ºC) | 15.4 | 16 | 14.7 | 15 | 13.5 | 16 | 16 | |
Melting point approx.( ºC) | 1450 | 1500 | 1500 | 1500 | 1500 | 1510 | 1520 | |
Tensile strength(N/mm2) | 580-680 | 630-780 | 630-780 | 630-780 | 600-700 | 650-800 | 680-830 | |
Elongation at rupture(%) | >16 | >12 | >12 | >12 | >12 | >12 | >10 | |
Variation of area(%) | 65-75 | 60-75 | 65-75 | 65-75 | 65-75 | 65-75 | 65-75 | |
Repeat Bending frequency(F/R) | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Hardness(H.B.) | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | |
Continuous Servicetime(Hours/ ºC) | -- | ≥80/1300 | ≥80/1300 | ≥80/1300 | ≥80/1250 | ≥50/1350 | ≥50/1350 | |
Micrographic structure | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | |
Magnetic properties | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic |
Magnetic |