Product Details
Place of Origin: China
Brand Name: DLX
Model Number: Ni80Cr20
Payment & Shipping Terms
Minimum Order Quantity: 5
Packaging Details: Spool package with Carton box, Coil package with polybag
Delivery Time: 5-21 days
Payment Terms: L/C, T/T, Western Union, MoneyGram
Supply Ability: 300 tons per month
Material: |
Nickel, Chromium |
Nickel(Min): |
76% |
Resistivity: |
1.09+/-0.05 |
Tensile Strength: |
637MPA |
Elongtation: |
≥20% |
Application: |
Heating, Resistivity |
Condition: |
Hard / Soft |
Sureface: |
Bright, Oxided, Acide |
Delivery Time: |
7-20 Days |
Name: |
Resistance Heating Wire |
Material: |
Nickel, Chromium |
Nickel(Min): |
76% |
Resistivity: |
1.09+/-0.05 |
Tensile Strength: |
637MPA |
Elongtation: |
≥20% |
Application: |
Heating, Resistivity |
Condition: |
Hard / Soft |
Sureface: |
Bright, Oxided, Acide |
Delivery Time: |
7-20 Days |
Name: |
Resistance Heating Wire |
In resistance heaters, Cr20Ni80 resistance wire is a commonly used heating element material. It is composed of 20% chromium and 80% nickel, with excellent electrical resistance characteristics and high temperature stability, suitable for various heating applications.
1. Resistance Heaters: Cr20Ni80 resistance wire is commonly used in laboratory resistance heaters to heat laboratory equipment, samples, or reaction vessels, providing precise temperature control for various experiments.
2. Heating Elements in Vacuum Furnaces: Due to its excellent high-temperature stability, Cr20Ni80 resistance wire is often used as heating elements in vacuum furnaces for high-temperature experiments and materials processing in laboratories.
3. Thermocouples: Cr20Ni80 resistance wire can also be used as one of the thermal sensing elements in thermocouples, used for measuring temperature and temperature changes, which are crucial for temperature monitoring and control in laboratory settings.
4. Material Performance Testing: In scientific research, Cr20Ni80 resistance wire can be used as part of material performance testing to assess thermal properties such as thermal conductivity, coefficient of thermal expansion, and other thermal characteristics.
Performance material | Cr10Ni90 | Cr20Ni80 | Cr30Ni70 | Cr15Ni60 | Cr20Ni35 | Cr20Ni30 | |
Composition | Ni | 90 | Rest | Rest | 55.0~61.0 | 34.0~37.0 | 30.0~34.0 |
Cr | 10 | 20.0~23.0 | 28.0~31.0 | 15.0~18.0 | 18.0~21.0 | 18.0~21.0 | |
Fe | -- | ≤1.0 | ≤1.0 | Rest | Rest | Rest | |
Maximum temperature℃ | 1300 | 1200 | 1250 | 1150 | 1100 | 1100 | |
Meltiing point ℃ | 1400 | 1400 | 1380 | 1390 | 1390 | 1390 | |
Density g/cm3 | 8.7 | 8.4 | 8.1 | 8.2 | 7.9 | 7.9 | |
Resistivity | -- | 1.09±0.05 | 1.18±0.05 | 1.12±0.05 | 1.00±0.05 | 1.04±0.05 | |
μΩ·m,20℃ | |||||||
Elongation at rupture | ≥20 | ≥20 | ≥20 | ≥20 | ≥20 | ≥20 | |
Specific heat | -- | 0.44 | 0.461 | 0.494 | 0.5 | 0.5 | |
J/g.℃ | |||||||
Thermal conductivity | -- | 60.3 | 45.2 | 45.2 | 43.8 | 43.8 | |
KJ/m.h℃ | |||||||
Coefficient of lines expansion | -- | 18 | 17 | 17 | 19 | 19 | |
a×10-6/ | |||||||
(20~1000℃) | |||||||
Micrographic structure | -- | Austenite | Austenite | Austenite | Austenite | Austenite | |
Magnetic properties | -- | Nonmagnetic | Nonmagnetic | Nonmagnetic | Weak magnetic | Weak magnetic |